
191 

9. SCHNEIDER W., upstream propagation of unsteady disturbances in supersonic boundary layers. 
3. Fluid Med., Vo1.63, pt.3, 1974. 

Translated by J.J.D. 

?MM u..s'.s.R.,vo1.48,No.2,pp.191-198r1984 0021-8928/84 $10.00+0.00 

Printed in Great Britain 01985 Pergamon press Ltd. 

THE EFFECTIVE THEMlAL CONDUCTIVITY OF A SUSPENSION* 

A.M. GOLOVIN and V.E. CHIZHOV 

The effective thermal conductivity of an inhOmOgeneOUS suspension is 
considered for the case of low and moderate volume densities of randomly 
distributed spherical particles. Amathematicalapparatus of convolutions 
of the A-functions is developed enabling closed formulas to be derived for 
the dipole moment of a particle in the system. An exact expression for 
the dipole moment averaged over the ensemble that is accurate to terms 
of the order of the square of the particle density is given for a spatially 
homogeneous distribution of particles. The effective thermal conductivity 
of the suspension is calculated to the same approximation. It is shown 
that when the region occupied by the spherical particles represents an 
ellipsoid of revolution and the temperature gradient away from this 
region tends to a given constant value, the effective thermal conductivity 
becomes independent of the ratio of the ellipsoid semiaxes, i.e. independ- 
ent of the form of the region occupied by the system. 

The effective thermal conductivity of a homogeneous suspension was studied earlier in 
/l--l/. Maxwell calculated the effective electrical conductivity of a mixture to terms of 
the order of the volume concentration of the spherical inclusions. The effective thermal 
conductivity is easily calculated to the same approximation, since the problems of determining 
the thermal and electrical conductivity are mathematically equivalent. The same problem is 
encountered in computing the dielectric permeability of two-phase mixtures ,f8/ and in determin- 
ing the effective shear modulus of a homogeneous and isotropic composite material /9, lo/. 

A cell model was used in /2-5/to compute the effective thermal and electrical conduct- 
ivity of suspensions at moderate and high particle densities. It was assumed that the particle 
was situated at the centre of a spherical cell, and the medium outside it possessed the 
required effective thermal conductivity. The drawback of this method lies in the arbitrariness 
of the choice of the cell boundary. A method of calculating the effective thermal conductivity 
of the media with spherical inclusions situated at the.nodes of various types of cubic lattices 
at moderate particle densities was given in /6/, where a review of the earlier investigations 
concerned with computing the thermal conductivity in analogous media at low volume densities 
was also given. The effective thermalconductivityofahomogeneous suspension with randomly 
distributed particles was calculated to terms of the order of the square of the particle 
density in /7/, using the method given earlier in /ll/. 

1. Formdation of the problem. Let a region of volume V containing N identical 
spherical particles of constant thermal conductivity x'#% exist in an infinite medium filled 
with a material of constant thermal conductivity x. We assume thtlt away from V a steady 
temperature distribution is given with constant gradient k. The temperature field T will 
depend, at any point I, on the position of the particle centres determined by the radius 
vectors r:1, . . ., rN. We shall denote the complete set of these radius vectors by RN. We will 
introduce an unconditional correlation function fN(RN) such that 

denotes the probability of finding the particle centres , respectively, within the small volumes 

dsr,, . . ., hr, beside the points rl,.+ ,,rN. 
f,v_, (R_v_~; r~.) defined in such a manner that 

We introduce the conditional correlation function 

+y fN--l (&-1; rN) d&--I 
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denotes the probability of finding the centres of N- 1 particles within the volumes d3r1. 

. . .( d%,_, beside the points r1r . . .1 r~_~ respectively, provided that the centre of the ?I-th 

particle is at the point rN 
In accordance with the 

properties: 
above definitions, the correlation functions have the following 

+~fd&i)d&r=k 

& 1 f.v-1 (RN-I; ~.NJ dfiN-,= 1 

fN (RN) = fN-1 (RN-I; r~) fl @N) 

fN-1 (RN-I; r~) = fN-8 (RN--B; rN-1, r~) k (rN+ rN) 

and IN, f~-1 (RN-I; rN)t fiv-z (RN$rN_i, rN) are symmetric functions of the arguments RN, RN-I 

and RN+ respectively. The mean number of particles per unit volume n(r) is connected with 

the one-particle function by the relation 

n (4 = (NV)fl (r) 
For the spatially homogeneous distribution we have 

The mean temperature gradient (over the ensemble) and mean heat flux in the system have 
the form 

G(e)=+ 1 fN (RN) IV’ (r, RN) dRN (1.1) 

F(r)=--&-! - fN (RN) xvT (r, RN) d&v 

% = ~‘8 (r, RN) + x [I - 8 (r, RN)] 
h 

0 (r, RN) = 
c 

q(a-Ir-r31)9 rl(z)= 
1, x>o 

-1 0, s<o 

The tensor x*@ connectingthe corry?onentsof theaveragedvectorsoftheheatflw F and the 
temperature gradient G 

is called the tensor of effective thermal conductivity of the suspension. Generally speaking, 

the tensor x,@ is not spherical /12/ but, as follows from the results of /7/ and of the 
present paper, in the case of spatially homogeneous system with randomly distributed inclusions 
the effective thermal conductivity is a scalar quantity: x,@ =x,6@. Below we shall compute 
x1 to terms of the order of c* inclusive (c = ‘f,lcaSN/V is the volume density of the particles). 
We establish that, although the vectors F and Gdepend on the form of the region occupied by 
the suspension, the effective heat conductivity %* within the approximation stated can be 
determined in terms of x,x' and c only. From (1.1) it follows that 

N 

F--xG=~~SfN(~N)q(a-~r--ril)~T'(r~~N)dRN 
G-1 

Here and henceforth T’ will denote the temperature at the point c within the particle. 
If the observer point r is situated outside the region occupied by the particles, then the 

temperature will be denoted by T. 
Using the properties of the correlation functions, we can obtain 

6-xG=N~~dRN_, 5 h(w) x fN-l(RN--l; N r ) VT’@, RN) dsrx ‘1.2) 
Ir--rNl<a 

and a formula analogous to (1.2) was obtained earlier in /7/. 
Let us place the coordinate origin at the centre of the N-th sphere, and denote by R;V-I 

the set of vectors r.l',...rr~_l where ri' = ri - rN , and the difference C - rN by rN. 

If the particle density distribution in the system is almost spatially homogeneous, then 
we can restrict ourselves to the expansion 
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fl (cd = fi 0 -xN)rfl(r)- XNvfl (r) f i +N%VB & ff (rf 
a. B-1 

The temperature gradient at some point of the space fixed relative to position of the 

particles, is obviously independent of the choice of the origin of coordinates, therefore we 
have 

VT' (r, RN) = -& T’ (XIV, R&) 

With reference to the function frJ-1, it is assumed that it is determined by the relative 
positions of the particles themselves, i.e. 

f~-X@N-r;r~N)= ~N-I(RN-GO) 

Then relation (1.2) can be written in the form 

(1.3) 

s 

c X#Z# -f$$- X 
-1 a. P-1 

I 
fN-1 (Rk-x; o)& T’ (XN, &v-x, d=XN 

The temperature distribution is found from the solution of the following problem: (ni is 

the unit normal to the surface of the i-th sphere) 

AT=O, AT*‘=0 (I=1,...,N) (1.4) 

VT-+k. irl+ce, (/kl -If 

The temperature is a harmonic function and can be represented (apart from an arbitrary 
constant omitted from the expression given below), in the neighbourhood and within the volume 
of the i-th particle, in the form of a series in terms of the spherical volume functions 

T 3 (Ir .q)+ (k.~) + pil D~"'"pApL"""P _I_ jz ~iD~“.aP~~"a~ (1.5) 

Here qa are Cartesian coordinates of the vector xt, DF.’ @% are multipolar moments of the 

i-th particle are to be determined. The repeated Greek indices ur, . . ..a. in (1.5) and further 
expresions, taking the value of 1, 2, 3, denote summation. Representing the solution of 
problem (1.4) in the from (1.51, ensures that the temperatures T and Ti’axe equal at the 
surface of the i-th particle. 

We note that the expansions (1.51 deviate from the standard series in spherical functions. 
As we know /13/, for fixed p, sp functions A~".% contain only 2p + 1 linearly independent 

functions. To avoid any ambiguity in the determination of the multipolar moments p..CSp t , 

we assume below that they satisfy two conditions: 1) D~...“P are symmetric over any pair of 

upper indices; 2) the contraction D~~‘a~@ -0. It can be shown that when the above condi- 

tions hold, the moments are defined uniquely. 

2. Determination of dipole moment. To determine the multipole moments Di 
ad ,.. (Ip 

we require that the functions (1.5) satisfy the condition of continuity of the normal heat 
flux component at the surface of the i-th particle. With this in mind, we use the analyticity 

of harmonic functions and expand A~*.'OLP near the i-th particle in a series in powers of Xi*: 
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(2.i.: 

Next we take into account the fact that the convolution of the tensor Ai 
Rl... B, 

over any 

two upper indices is equal to zero and, that 
fit... 6 

Ai q has the form 

(2.2) 

where the terms omitted contain at least one Iironecker delta. The temperature T near the i- 
t.h particle can be written, taking (2.2) into account, as follows: 

Using the formulas 

npl..&$~%=_+A~~Q 

1 t 

which follow from the homogeneity of the A-functions, we can obtain the following infinite 
system of equations connected the multipolar moments of the particles in the system: 

(2.4) 

Brown in /14/ studied an analogous problem, restricting himself to the dipole terms and 
neglecting the influence of the higher-order multipoles on the magnitude of the dipole moments. 

If jhl 191, then the soluiton of (2.4) can be obtained by an iterative method. When 
carrying out the iterations the following type sums will appear: 

It should be noted that in averaging the doubie sums over j and n with the help of the 
conditional correlation function f~_i(R~_l;ri), we obtain terms proprotional to Cp provided 

that nf i. Therefore, if we limit ourselves, in the course of computing the multipole moments, 
to terms of the order of c, then only the terms i = n will have to be retained, An analogous 
situation arises when multiple sums are averaged. Thus in averaging the triple sums over j, 

m, n, we must limit ourselves to terms with m = i, n =j only. Taking all this into account 
and carrying out the iterations, we obtain 

In deriving (2.5), we have used the symmetry of the function Aija""CLn to interchange of 

the upper idices and the fact that the function acquires the multiplier (-1)” when the lower 
indices are interchanged. In addition, to redme the length of the expressions for convolu- 
tions of the A-functions, we will use the following notation: 

To obtain the numberical results we must have a formula for convolution over the repeated 
upper Greek indices of the A-functions in the expression for M,,el--fi;rO in (2.5). With this 
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in mind, we shall utilize certain properties of the A-function. We have the following 
relation: 

~~...a"PI...P,*~~..~~= _ (p+(I)! (Q - i)!! 
p! rf,F’ 

[* *;..=Pc + 
(2.6) 

2q+ i c cu..+ 
P 

- n&j n. .P = Ai 
‘ij I( 

1) 
‘ij 1 

To prove it, we write the second function in the form 

*tJ!...B,~ a 
11 =P *fj A~..13q _ a (-I)* (2(1- i)!! & ar& [ ++I rij . . . 

r$+... = Y 1 . ;_ *)* (29 - m L2 & 
rp;” mi, 

“i, . . . &n~ . ..r+- (2q+l)n$... ‘j (, n%P. + . . . ] 

Terms omitted contain at least one Kronecker delta and offer no contribution to convolu- 
tion with the first function of (2.6). We can further show that the following relation holds: 

+;..ap'r=_&Ae+..=~ ‘ij ij 
Consecutive application of this formula yields 

and we have 

"P! ,, . ..ntWij 
a*...aP&...bq p (-v (P + q)! *F...Bq 

ql r; ‘f 

*;...epPI...Eq*k..Q = (- q* (2q- i)!! x 

rfy 

[qAy=P~“‘@$$ . . . n$-J - (2q + l)hy.=PBI...%,~! ,, . . . niapnt] = 

_ (P+qY@f?--i)ll qgL.a P 

rp (P + i)! [ 

L Ay:.‘“P& j ’ + (P + I) (24 + I) rij i) *j 1 
from which (2.6) follows. The following relations also hold: 

&?yP*y@P =i PI (2P - l)!! 
$P+' 0 

&?I...@ ‘l&j fJI..JJP _ _ (P + ‘)~u~s- i)!! nija 

v 

&Y..@ ‘hij @l...BP _ (P + 2;;m1- I)!! @” 

1, 

(2.7) 

and are proved in a similar way. 
Below we shall need an expression for the dipole moment DiS which can be found from (2.5) 

with q = 1. Using (2.6) and (2.7), we can obtain the following fundamental formula which 
yields the result of convolution of an arbitrary number of A-functions: 

A;@)@')(m) ...A~)B= 
G8) 

(PI + Pd . . . (P,,s- P,)! (2PI - I)!! . . . (2P, - l)l! 
X 

2(P*-ti)!.. . (pwl + I)1 r;~*..+Pn*n+* 

((- i)“” p1. . . P"d=fi+ I(- V"Pl. ..&I+ 

2 (PI + 1). * . (Pm + 111 nij”Q) 

3. Calculation Of the effective thermal conductivity. The results obtained 
enable us to determine the integrals over the volume of the N-th particle appearing in (1.3). 
Indeed, using expansion (2.3) near the particle with index i=N and taking into account the 
mutual orthogonality of the functions Agq." with different numbers of upper indices, we can 
obtain 

a= 
cc 

ANj 
ar...ap8~~‘..%~NB + ~~0~~61 n’s = 

,*x p=l 
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Further, using (2.4) we can obtain 

We can evaluate the following integrals by similax methods: 

In evaluating the last integral, higher-order terms proportional to 03' were omitted. 
Substituting these expressions into (1.3), we arrive at the following result: 

~-~~=~~(~‘-x)Z(~-~~(~-~A~,)<DNQ>- (3.1) 

~(3-~)~(~~~*..] 

<D”N’“‘ap> = & 5 d&e j&1(&; 0) DF~‘ap (&_I) 

In computing the averages (DIP) and <Dg> to terms of the order of the mean volume 

density c = 4f&us~Y inclusive, we will use the representation of the correlation function 

fl (I; 0) in the form 
f~~?~oO)=?~lTf-z2aff~ftf 

Let us further limit ourselves to the case of a spatially homogeneous distribution. 
Then the averaging and use of (2.5), (2.81 yields 

(DN’)=~~u*[~“+~~O~~P<~~~A~)~C~~IPLB]~ B=%g,b (3.2) 

bl+$&!..$& d--x 

P%‘-t-(P+lfx 

m 9) 

CE (P f 911 W’ - xp 

P-1 u-1 
4W(p _I I)1 (q-l)! [PW’ -t- (P + l)xlrm’ + (9 + 1) 4 

b”==g ‘1. 2 (~~~~*.*....~~~~~~’ x 
w-1 P*W 

h a.. - $,,(2Pi--l)lI . ..(2p*- 1)1! 

[2(p, +. * . + p*)+n]2'@'+...+Pn)+" 
X 

[(Pl+~)...(P,-t1~-(-l)"p~...P,l, n>3 

Using the properties of the correlation functions, we can reduce the process of computing 
the averages of the sum A?$ to computing the integral over the volume V, excluding the 

13.9 

When the region occupied by the particles with constant volume density c is an ellipsoid, 
evaluating the last integral is equivalent to solving the well-known problem of electrostatics, 
of calculating the depolarizing field /15/. If two semiaxes of the ellipsoid are equal while 
the third one represents the axis of symmetry and is directed along the vector k, then 

k@<c A~~>=+$-(i-KKo)kn 
jcN 
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Here 4/snK~ is the depolarisation coefficient equal, in particular, to 'l,n for a sphere, 

to 4n for a thin plate, and to 0 for a circular cylinder. 
There effective thermal conductivity is obtained in /?/ for an infinite medium. Condit- 

ional convergence oftheintegrals representing the mean dipole moment means that the computa- 
tions can be reduced, in accordance with the method described in /4/, to calculating the 
finite difference between two, conditionally converging integrals. In the present paper the 

problem does not arise, since the particles are distributed through a finite volume of the 
space. 

It can be shown that we have the following expression for the homogeneous and isotropic 
distribution apart from terms of order O(c): 

(D”Np) = 0 (3.4) 

We prove this relation using the formula (2.5). We see that the quantitites I@&" in 

(2.5) have the form 
&Es 

M,&R" = Al (n) Ap + Aa (n) nij”hj 

and integration over the angular part yields, by virtue of the orthogonality of the A-func- 
tions with the same indices, (3.4). 

To compute the effective thermal conductivity we require, in addition to (3.1), an expres- 
sion for the mean temperature gradient in the system. If the region occupied by the particles 
represents an ellipsoid, as was assumed when calculating the dipole moment, then 

G (r) = k - ++-KD(D,)=k -ccXIKD[l + &(I - K&B)Ik (3.5) 

Substituting (3.5) into (3.1) and taking into account (3.2) aa (3.3), we arrive at the 
following expression for the three-dimensional homogeneous distribution corresponding to the 
case frE1: 

F = x,G = %G - c (A, - 1) (x’ - x) [i + ch (1 - KD + B)] k 

Thus the effective thermal conductivity, up to aa including terms of order c2, is equal 
to x *=x- c (x' - x) (h, - 1) - c?q (x’ - x) (A, - 1) (1 + B) 

The above results show that the effective thermal conductivity is independent of the form 
of the region occupied by theparticlesuptoandincluding terms of order 9, slthough the 
temperature and heat flux averaged over the ensemble depend not only on the volume density, 
but also on the form of the region occupied by the suspension. 

The effective thermal conductivity is identical with the Maxwell formula to terms propor- 
'tional to c. Below we given the results of calculations of the coefficient accompanying cl 
in the expression %,,/% (the number on the left corresponds to the number of first terms taken 
into account in B) 

The results of the computations carried out earlier in /7/ by another method agree with 
the values given in the last column except for the last two values (according to /7/ those 
values are equal 3.90 and 4.51 respectively). 

It is clear that the series for determining the coefficient of c% converges fairly rapidly 
except in the case when X'S%. Restricting ourselves to two terms of the series only, we 
find that the error in the value of the coefficient of d does not exceed 5% for any value of 
the rati of x' and x. 
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EFFECT OF HYDRODYMP'lIC INTERACTIONS BETWEEN THE PARTICLES ON THE 
RHEOLOGICAL PROPERTIES OF DILUTE EMULSIONS* 

A.Z. ZINCHFNKO 

The form of mean stress tensor in monodisperse emulsions is studied in the 
second-order approximation with respect to the volume density of the 
particles, for a number of flows which are of rheoloqical interest. It 
is shown how the particular features of the two-particle interaction 
between liquid spheres, especially the non-zero differences between the 
normal stresses in shear flows , give rise to non-Newtonian properties of 
the emulsion. 

We know /l, 2/ that in the case of the second-order approximation 
with respect to the volume concentration of the suspended disperse ph&se 
the mean stress tensor is expressed in terms of two-particle interactions 
in a linear velocity field, and of the binary correlation function. The 
binary function is formed under the action of the macroscopic flow. 
Specific results, however, were obtained only for suspensions and rigid 
spheres /l, 2,'. The present paper deals with the structural model of 
fluid spheres of equal radius, with hydrodynamic and "contact" interactions. 
A number of fundamental deviations from /I/ exist in the case of rheofogic- 
ally strong flows, sincedropflocculation-deflocculation processes must be 
considered (i.e. the formation and disruption of aggregates). A strict 
analysis is given within the framework of the model, of the effect of 
these processes on the binary correlation function. A connection between 
the model of "contact" interaction and the result of the D.L.V.O. theory 
/3-5/is considered. Numerical values are obtained for the Trouton 
viscosity in strong rheologically axisymmetric expanding flows. The 
differences in normal stresses in a strong shear flow are obtained and an 
approximate estimate is given for the shear viscosity and compared with 
experimental data /6/. A method given in /2/ is used to compute the 
effective viscosity of the emulsion in arbitrary, rheologically weak flows 
in which Brownian motion predomaintes. Considerable use is made of the 
exact computational methods and asymptotic representations of hydrodynamic 
functions determining the pairwise interaction of fluid spheres /7-9/. 

1. A general expression for the mean stress tensor. Consider a locally homo- 

geneous monodisperse emulsion of drops of radius a and viscosity CL' freely sUspended in a 
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